Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1325269, 2024.
Article in English | MEDLINE | ID: mdl-38449874

ABSTRACT

Introduction: Influenza A viruses (IAVs) infect the respiratory tract of mainly humans, poultry, and pigs. Co-infections with pathogenic lung bacteria are a common event and contribute to the severity of disease progression. Neutrophils are a major cell type of the innate immune system and are rapidly recruited to the site of infection. They have several effector functions to fight invading pathogens such as the secretion of reactive oxygen species (ROS) or the release of neutrophil extracellular traps (NETs). NETs are known to promote the growth of Pasteurellaceae bacteria, especially if degraded by nucleases. Methods: In this study, bronchoalveolar lavage fluid (BALF) from 45 field-infected pigs was analyzed for 1) NET markers, 2) influence on growth of lung bacteria, and 3) impact on neutrophil functions. BALF samples from 21 IAV-positive pigs and 24 lung diseased but IAV-negative pigs were compared. Results: Here, we show that neutrophils in the lungs of IAV-positive pigs release vesicular NETs. Several NET markers were increased in the BALF of IAV-positive pigs compared with the BALF from IAV-negative pigs. The amount of NET markers positively correlated with the viral load of the IAV infection. Interestingly, the BALF of IAV-positive pigs enhanced the growth of bacteria belonging to the family of Pasteurellaceae as potential coinfecting bacteria. These effects were weaker with the BALF derived from IAV-negative pigs with other lung infections. The intensity of oxidative burst in neutrophils was significantly decreased by BALF from IAVpositive pigs, indicating impaired antimicrobial activity of neutrophils. Finally, the lung milieu reflected by IAV-positive BALF does not enable neutrophils to kill Actinobacillus pleuropneumoniae but rather enhances its growth. Discussion: In summary, our data show that an IAV infection is affecting neutrophil functions, in particular the release of NETs and ROS. Furthermore, IAV infection seems to provide growth-enhancing factors for especially coinfecting Pasteurellaceae and reduces the killing efficiency of neutrophils.


Subject(s)
Influenza A virus , Neutrophils , Humans , Animals , Swine , Reactive Oxygen Species , Bronchoalveolar Lavage , Bacteria , Dimercaprol
2.
Vet Immunol Immunopathol ; 267: 110701, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147695

ABSTRACT

Doxycycline is a broad-spectrum tetracycline-class antibiotic that is frequently used to treat bacterial infections. Its use has also been described in immune-mediated diseases due to its immunomodulatory properties. The aim of this study was to evaluate the immunomodulatory effect of doxycycline on canine neutrophil functions. Therefore, the release of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps (NETs) were determined after incubation of canine PMNs with doxycycline in three different concentrations (4 µg/mL, 20 µg/mL and 200 µg/mL) for one and three hours, respectively. Additionally, a neutrophil killing assay with a doxycycline-resistant Staphylococcus aureus was performed to determine the bactericidal effect of doxycycline treated PMNs in presence of plasma. Doxycycline significantly diminished the production of ROS. However, doxycycline concentrations of 4 µg/mL and 20 µg/mL significantly induced NETs. A synergistic bacteriostatic effect of PMNs and doxycycline on a doxycycline-resistant Staphylococcus aureus isolate was detectable. However, already PMNs and especially doxycycline alone inhibited the growth. In summary, doxycycline showed a concentration-dependent immunomodulatory property in canine PMNs with a reduced ROS production and increased NET-induction. This immunomodulatory effect resulted in a slightly increased elimination of a doxycycline-resistant Staphylococcus aureus by the doxycycline plasma concentrations achieved in dogs.


Subject(s)
Dog Diseases , Extracellular Traps , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Dogs , Animals , Doxycycline/pharmacology , Neutrophils , Reactive Oxygen Species , Staphylococcal Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcus aureus , Dog Diseases/drug therapy , Dog Diseases/microbiology
3.
Pathogens ; 11(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36015001

ABSTRACT

Glaesserella (G.) parasuis is one of the most important porcine pathogens causing Glaesser's disease. Neutrophil granulocytes are the major counteracting cell type of the innate immune system, which contribute to the host defense by phagocytosis or the formation of neutrophil extracellular traps (NETs). Recently, NET-formation has been shown to facilitate the survival of bacteria from the Pasteurellaceae family. However, the interaction of NETs and G. parasuis is unclear so far. In this study, we investigated the interplay of three G. parasuis serotypes with porcine neutrophils. The production of reactive oxygen species by neutrophils after G. parasuis infection varied slightly among the serotypes but was generally low and not significantly influenced by the serotypes. Interestingly, we detected that independent of the serotype of G. parasuis, NET formation in neutrophils was induced to a small but significant extent. This phenomenon occurred despite the ability of G. parasuis to release nucleases, which can degrade NETs. Furthermore, the growth of Glaesserella was enhanced by external DNases and degraded NETs. This indicates that Glaesserella takes up degraded NET components, supplying them with nicotinamide adenine dinucleotide (NAD), as this benefit was diminished by inhibiting the 5'-nucleotidase, which metabolizes NAD. Our results indicate a serotype-independent interaction of Glaesserella with neutrophils by inducing NET-formation and benefiting from DNA degradation.

4.
Front Immunol ; 13: 879157, 2022.
Article in English | MEDLINE | ID: mdl-35619694

ABSTRACT

During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.


Subject(s)
COVID-19 , Extracellular Traps , Purpura, Thrombocytopenic, Idiopathic , Stroke , Thrombocytopenia , Thrombosis , Vaccines , Deoxyribonuclease I/metabolism , Deoxyribonucleases , Female , Humans , Neutrophils , Pandemics , Peroxidase/metabolism , Platelet Factor 4/metabolism , Purpura, Thrombocytopenic, Idiopathic/metabolism , Stroke/etiology , Stroke/metabolism , Thrombocytopenia/chemically induced , Thrombocytopenia/metabolism , Thrombosis/etiology , Thrombosis/metabolism , Vaccines/metabolism
5.
Stroke ; 53(4): 1235-1244, 2022 04.
Article in English | MEDLINE | ID: mdl-34991335

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) and endogenous deoxyribonuclease activity are opposing mediators and might influence the inflammatory response following acute ischemic stroke. In this cohort study, we investigated the relation between these markers, circulating inflammatory mediators and clinical course including occurrence of stroke-associated infections (SAI) in patients with acute stroke. METHODS: Ninety-two patients with stroke due to large vessel occlusion undergoing mechanical thrombectomy were prospectively recruited at Hannover Medical School from March 2018 to August 2019. Deoxyribonuclease activity, cfDNA, damage-associated molecular patterns, and circulating cytokines were measured in venous blood collected immediately before mechanical thrombectomy and 7 days later. Reperfusion status was categorized (sufficient/insufficient). Clinical outcome was evaluated using the modified Rankin Scale after 90 days, where a score of 3 to 6 was considered unfavorable. To validate findings regarding SAI, another stroke cohort (n=92) was considered with blood taken within 24 hours after stroke onset. RESULTS: Patients with unfavorable clinical outcome had higher cfDNA concentrations. After adjustment for confounders (Essen Stroke Risk Score, National Institutes of Health Stroke Scale, and sex), 7-day cfDNA was independently associated with clinical outcome and especially mortality (adjusted odds ratio: 3.485 [95% CI, 1.001-12.134] and adjusted odds ratio: 9.585 [95% CI, 2.006-45.790]). No association was found between reperfusion status and cfDNA or deoxyribonuclease activity. While cfDNA concentrations correlated positively, deoxyribonuclease activity inversely correlated with distinct biomarkers. Baseline deoxyribonuclease activity was lower in patients who developed SAI compared with patients without SAI. This association was confirmed after adjustment for confounding factors (adjusted odds ratio: 0.447 [95% CI, 0.237-0.844]). In cohort 2, differences of deoxyribonuclease activity between patients with and without SAI tended to be higher with higher stroke severity. CONCLUSIONS: The interplay of endogenous deoxyribonuclease activity and cfDNA in acute stroke entails interesting novel diagnostic and potential therapeutic approaches. We confirm an independent association of cfDNA with a detrimental clinical course after stroke due to large vessel occlusion. This study provides first evidence for lower endogenous deoxyribonuclease activity as risk factor for SAI after severe stroke.


Subject(s)
Brain Ischemia , Cell-Free Nucleic Acids , Ischemic Stroke , Stroke , Brain Ischemia/therapy , Cohort Studies , Deoxyribonucleases , Humans , Retrospective Studies , Stroke/therapy , Thrombectomy/adverse effects , Treatment Outcome
6.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299355

ABSTRACT

Methylprednisolone is a glucocorticoid and can negatively influence immune defense mechanisms. During bacterial infections in the dog, neutrophils infiltrate infected tissue and mediate antimicrobial effects with different mechanisms such as phagocytosis and neutrophil extracellular trap (NET) formation. Here, we investigated the influence of methylprednisolone on canine NET formation and neutrophil killing efficiency of Gram positive and Gram negative bacteria. Therefore, canine blood derived neutrophils were treated with different concentrations of methylprednisolone over time. The survival factor of Staphylococcus pseudintermedius, Streptococcus canis or Escherichia coli was determined in presence of stimulated neutrophils. Additionally, free DNA and nucleosomes as NET marker were analyzed in supernatants and neutrophils were assessed for NET formation by immunofluorescence microscopy. Methylprednisolone concentrations of 62.5 and 625 µg/mL enhanced the neutrophil killing of Gram positive bacteria, whereas no significant influence was detected for the Gram negative Escherichia coli. Interestingly, higher amounts of free DNA were detected under methylprednisolone stimulation in a concentration dependency and in the presence of Streptococcus canis and Escherichia coli. The nucleosome release by neutrophils is induced by bacterial infection and differs depending on the concentration of methylprednisolone. Furthermore, immunofluorescence microscopy analysis identified methylprednisolone at a concentration of 62.5 µg/mL as a NET inducer. In summary, methylprednisolone enhances NET-formation and time-dependent and concentration-dependent the bactericidal effect of canine neutrophils on Gram positive bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Extracellular Traps/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Methylprednisolone/pharmacology , Neutrophils/drug effects , Animals , Dogs , Female , Male , Nucleosomes/drug effects , Phagocytosis/drug effects
7.
Pathogens ; 8(4)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756894

ABSTRACT

Swine stocks are endemically infected with the major porcine pathogen Streptococcus (S.) suis. The factors governing the transition from colonizing S. suis residing in the tonsils and the exacerbation of disease have not yet been elucidated. We analyzed the sudden death of fattening pigs kept under extensive husbandry conditions in a zoo. The animals died suddenly of septic shock and showed disseminated intravascular coagulopathy. Genotypic and phenotypic characterizations of the isolated S. suis strains, a tonsillar isolate and an invasive cps type 2 strain, were conducted. Isolated S. suis from dead pigs belonged to cps type 2 strain ST28, whereas one tonsillar S. suis isolate harvested from a healthy animal belonged to ST1173. Neither S. suis growth, induction of neutrophil extracellular traps, nor survival in blood could explain the sudden deaths. Reconstituted blood assays with serum samples from pigs of different age groups from the zoo stock suggested varying protection of individuals against pathogenic cps type 2 strains especially in younger pigs. These findings highlight the benefit of further characterization of the causative strains in each case by sequence typing before autologous vaccine candidate selection.

8.
Biomacromolecules ; 11(1): 39-50, 2010 Jan 11.
Article in English | MEDLINE | ID: mdl-19957957

ABSTRACT

Oligo(ethylene glycol) methyl ether methacrylates (OEGMA) of various chain lengths (i.e., 9, 23, or 45 EG units) and N,N-dimethylaminoethyl methacrylate (DMAEMA) were copolymerized by atom transfer radical polymerization (ATRP), yielding well-defined P(DMAEMA-co-OEGMA) copolymers with increasing OEGMA molar fractions (F(OEGMA)) but a comparable degree of polymerization (DP approximately 120). Increase of both F(OEGMA) and OEGMA chain lengths correlated inversely with gene vector size, morphology, and zeta potential. P(DMAEMA-co-OEGMA) copolymers prevented gene vector aggregation at high plasmid DNA (pDNA) concentrations in isotonic solution and did not induce cytotoxicity even at high concentrations. Transfection efficiency of the most efficient P(DMAEMA-co-OEGMA) copolymers was found to be >10-fold lower compared with branched polyethylenimine (PEI) 25 kDa. Although OEGMA copolymerization largely reduced gene vector binding with the cell surface, cellular internalization of the bound complexes was less affected. These observations suggest that inefficient endolysosomal escape limits transfection efficiency of P(DMAEMA-co-OEGMA) copolymer gene vectors. Despite this observation, optimized p(DMAEMA-co-OEGMA) gene vectors remained stable under conditions for in vivo application leading to 7-fold greater gene expression in the lungs compared with PEI. Tailor-made P(DMAEMA-co-OEGMA) copolymers are promising nonviral gene transfer agents that fulfill the requirements for successful in vivo gene delivery.


Subject(s)
Drug Carriers/chemistry , Genetic Vectors/administration & dosage , Genetic Vectors/pharmacology , Methacrylates/chemistry , Methylmethacrylate/chemistry , Polymers/chemistry , Animals , Bronchi/cytology , Bronchi/metabolism , Cell Survival , DNA/genetics , DNA/metabolism , Electrophoresis, Agar Gel , Epithelial Cells/metabolism , Female , Flow Cytometry , Gene Transfer Techniques , Humans , Luciferases/metabolism , Mice , Mice, Inbred BALB C , Polyethyleneimine , Polymers/chemical synthesis , Polymers/metabolism , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Transfection
9.
Exp Mol Med ; 41(12): 919-34, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19745601

ABSTRACT

phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.


Subject(s)
Alveolar Epithelial Cells/metabolism , Bacteriophages/genetics , Genetic Vectors/genetics , Integrases/genetics , Streptomyces/virology , Animals , Cell Line , Chick Embryo , Female , Gene Expression , Gene Silencing , Genes, Reporter , Genetic Therapy , Humans , Mice , Mice, Inbred BALB C , Plasmids/genetics , Promoter Regions, Genetic , Transfection
10.
J Gene Med ; 9(11): 967-75, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17712864

ABSTRACT

BACKGROUND: Phage phiC31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study investigated the activity of phiC31 integrase in murine lungs. METHODS: Transfections in murine alveolar epithelial (MLE12) cells were performed with Lipofectamine 2000. For in vivo gene delivery, DNA was complexed with polyethylenimine (PEI) and PEI-DNA complexes were injected intravenously into mice. Expression of luciferase in mice was monitored by in vivo bioluminsecence imaging. Genomic integration and integration into a previously described 'hotspot' were confirmed by polymerase chain reaction (PCR). RESULTS: phiC31 integrase mediated intramolecular recombination between wild-type attB and attP sites in MLE12 cells. Long-term gene expression could be observed in MLE12 cells in the presence of integrase without any selection pressure. Long-term expression of luciferase after intravenous injection of PEI-DNA complexes could be observed only in the lungs of mice which were co-injected with the integrase-encoding plasmid. Increased amounts of integrase plasmid and administration of a second dose had no effect on the level of luciferase expression achieved with a single dose, which was three orders of magnitude lower than the values observed on 'day 1' post application. Genomic integration of the transgene in the mouse lungs was confirmed by PCR. Seven out of the fifteen treated mice showed integration at the mpsL1 site, a previously described 'hot spot' from liver. CONCLUSIONS: These results provide evidence for the activity of phiC31 integrase in lungs but also emphasize the need for optimization of the system to maintain long-term gene expression at high levels.


Subject(s)
Genetic Therapy/methods , Integrases/genetics , Recombination, Genetic , Transfection/methods , Animals , Attachment Sites, Microbiological , Bacteriophages , Cell Line , Epithelial Cells , Gene Expression , Genes, Reporter , Genome/genetics , Lipids , Lung/metabolism , Mice , Plasmids , Pulmonary Alveoli/cytology , Transfection/standards , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...